The Parking Problem: Part 3 - Rényi's Approach
Solution of the Delay Differential Equation
A more satisfying approach is Rényi's solution to the delay differential equation derived from the master equation (see 1). We start with the familiar form:
$$ \begin{equation} M(x + 1) = 1 + \frac{2}{x} \int_{0}^{x} M(t) dt \end{equation} $$
then multiply both sides by $x$:
$$ x M(x + 1) = x + 2 \int_{0}^{x} M(t) dt $$
and differentiate the result with respect to x:
$$ \begin{equation} x M^{\prime}(x + 1) + M(x + 1) = 1 + 2 M(x) \quad \text{for} \quad x > 0 \end{equation} $$
We now consider the following:
$$ \begin{equation} \varphi(s) = \int_{0}^{\infty} M(x) e^{-sx} dx \end{equation} $$
which is the Laplace transform of $M(x)$. We will show that $\varphi(s)$ takes the form:
$$ \begin{equation} \varphi(s) = \frac{e^{-s}}{s^2} \int_{s}^{\infty} \exp \left( -2 \int_{s}^{t} \frac{1 - e^{-u}}{u} du \right) dt \end{equation} $$
Returning to equation $2$ with the initial condition:
$$ M(x) = 0 \quad \text{for} \quad 0 \leq x < 1 $$
we multiply across by $e^{-sx}$ and integrating:
$$ \begin{align*} \int_{0}^{\infty} x M^{\prime}(x + 1) e^{-sx} dx + \int_{0}^{\infty} M(x + 1) e^{-sx} dx & = \int_{0}^{\infty} e^{-sx} dx + \int_{0}^{\infty} 2 M(x) e^{-sx} dx \\ & = -\frac{ e^{-sx} }{s} \bigg\vert_{x = 0}^{\infty} + 2 \int_{0}^{\infty} M(x) e^{-sx} dx \\ & = \frac{1}{s} + 2 \varphi(s) \end{align*} $$
We take each part of the left hand side separately:
$$ \begin{align*} \int_{0}^{\infty} M(x + 1) e^{-sx} dx & = \int_{1}^{\infty} M(t) e^{-s(t - 1)} dt \\ & = e^{s} \int_{1}^{\infty} M(t) e^{-st} dt \\ & = e^{s} \varphi(s) \end{align*} $$
making use of our initial condition. Looking at the other integral, and integrating by parts:
$$ \begin{align*} \int_{0}^{\infty} x M^{\prime}(x + 1) e^{-sx} dx & = - \frac{d}{ds} \left( \int_{0}^{\infty} M^{\prime}(x + 1) e^{-sx} dx \right) \\ & = - \frac{d}{ds} \left( M(x + 1) e^{-sx} \bigg\vert_{x = 0}^{\infty} + s \int_{0}^{\infty} M(x + 1) e^{-sx} dx \right) \\ & = - \frac{d}{ds} \left( - M(1) + s e^{s} \varphi(s) \right) \\ & = - \frac{d}{ds} \left( s e^{s} \varphi(s) \right) \end{align*} $$
so our delay differential equation becomes:
$$ \begin{align*} - \frac{d}{ds} \left( s e^{s} \varphi(s) \right) + e^{s} \varphi(s) & = \frac{1}{s} + 2 \varphi(s) \\ - \frac{d}{ds} \left( s e^{s} \varphi(s) \right) & = \frac{1}{s} + 2 \varphi(s) - e^{s} \varphi(s) \\ \frac{d}{ds} \left( s e^{s} \varphi(s) \right) & = \varphi(s) ( e^{s} - 2 ) - \frac{1}{s} \end{align*} $$
we now make the substitution $w(s) = e^{s} \varphi(s)$. Our equation becomes:
$$ \begin{align*} \frac{d}{ds} \left( s w(s) \right) & = w(s) ( 1 - 2 e^{-s}) - \frac{1}{s} \\ w(s) + s w^{\prime}(s) & = w(s) - 2 w(s) e^{-s} - \frac{1}{s} \\ s w^{\prime}(s) & = - 2 w(s) e^{-s} - \frac{1}{s} \end{align*} $$
solving this inhomogeneous equation gives us:
$$ w(s) = \frac{1}{s^2} \int_{s}^{\infty} \exp \left( -2 \int_{s}^{t} \frac{1 - e^{-u}}{u} du \right) dt $$
which is another form of equation $4$.
The Computation of the Limit
R'enyi provides the following theorem:
Theorem. One has the limit $$ \lim_{x \to \infty} \frac{M(x)}{x} = C_R $$ with $$ C_R = \int_{0}^{\infty} \exp \left( -2 \int_{0}^{t} \frac{1 - e^{-u}}{u} du \right) dt $$
In order to compute the limit, R'enyi makes use of the following Tauberian theorem (stated without proof):
Theorem. if $f$ is positive and integrable over every finite interval $(0, T)$ and $e^{-st}f(t)$ is integrable over $(0, \infty)$ for any $s > 0$ and if $$ g(s) = \int_{0}^{\infty} e^{-st} f(t) dt \simeq H s^{-\beta} \text{ as } s \to 0 $$ where $\beta > 0$ and $H > 0$ then when $x \to \infty$, we have $$ F(x) = \int_{0}^{x} f(t) dt \simeq \frac{H}{\Gamma(1 + \beta)} x^{\beta} \text{ as } x \to \infty $$
Proof. If we re-arrange equation $4$ we have:
$$ s^2 \varphi(s) = e^{-s} \int_{s}^{\infty} \exp \left( -2 \int_{s}^{t} \frac{1 - e^{-u}}{u} du \right) dt $$
taking the limit as $s \to 0$:
$$ \begin{align*} \lim_{s \to 0} s^2 \varphi(s) & = \int_{0}^{\infty} \exp \left( -2 \int_{0}^{t} \frac{1 - e^{-u}}{u} du \right) dt \\ & = C_R \end{align*} $$
from the definition of $\varphi(s)$ ( equation $3$ ):
$$ \int_{0}^{\infty} M(x) e^{-sx} dx = \frac{C_R}{s^2} $$
as $s \to 0$. Applying the above theorem, we get:
$$ \begin{align*} \int_{0}^{x} M(t) dt & = \frac{C_R x^2}{\Gamma(3)} \\ & = \frac{C_R x^2}{2} \\ \frac{2}{x^2} \int_{0}^{x} M(t) dt & = C_R \end{align*} $$
as $x \to \infty$. Returning to the familiar equation $1$ and dividing across by $x$, and taking the limit as $x \to \infty$, we have:
$$ \begin{align*} \lim_{x \to \infty} \frac{M(x)}{x} & = \lim_{x \to \infty} \left( \frac{1}{x} + \frac{2}{x (x - 1)} \int_{0}^{x - 1} M(t) dt \right) \\ & = C_R \end{align*} $$
which is the required limit. $\square$
Remarks
While certainly more interesting than Weiner's approach - indeed an expression for the jamming limit is derived - this author is still left feeling dissatisfied by the approach taken. The Laplace transform of the master equation is introduced without any of it's specific features being used - for example, the reduction of an analytic problem to an algebraic problem, and no inverse step is performed - it is merely used as a convenient form in order to apply a Tauberian theorem, and hence the reference to the Laplace Transform could have been omitted.